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Abstract 
 
The spline function technique is used to analyze the vibration of multi-layered circular cylindrical shells with cross-

ply walls including first-order shear deformation theory. Both antisymmetric and symmetric cross-ply laminations are 
considered in this analysis. The governing equilibrium equations are obtained in terms of displacement and rotational 
functions. A system of coupled ordinary differential equations in terms of displacement and rotational functions are 
obtained by assuming the solution in a separable form. These functions are approximated by using Bickley-type splines 
of suitable order to obtain the generalized eigenvalue problem by applying point collocation techniques with appropri-
ate boundary conditions. Parametric studies are performed to analyze the frequency response of the shell with reference 
to the material properties, number of layers, fiber orientation, thickness to radius ratio, length to radius ratio and 
circumferential node number. Reasonable agreement is found with existing results obtained by FEM and other methods. 
Valuable results are presented as graphs and discussed. 
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1. Introduction 

The design of cylindrical shell structures is widely 
used in the fields of aerospace, automobile, chemical 
industries and ship building. Present day engineers 
are mainly focusing on the design of composite struc-
tures due to their higher specific stiffness, better 
damping and shock absorbing characteristics. The 
natural frequencies depend highly on ply orientations, 
boundary conditions and geometric parameters [1-7]. 
In the case of composite laminated shells there is an 
advantage for adjusting the natural frequency, which 
is by designing a suitable lamination scheme [8, 9]. 
Several types of theories and methods of analysis 
have been developed and applied for free vibration 

studies of composite elements. Many of these theories 
were developed originally for thin shells and are 
based on the Kirchhoff-Love hypothesis, i.e., trans-
verse shear deformation is neglected. Reddy [10] 
presented the bending of laminated anisotropic com-
posite shells by a shear deformation theory using a 
finite element method. An extension of  Sander’s 
shell theory for doubly curved isotropic shells to a 
shear deformation theory of laminated shells is stud-
ied by Reddy [11]. The study dealt with the develop-
ment of exact solutions for simply supported cross-
ply laminated shells. Lam and Loy [12] analyzed the 
laminated cylindrical shells by using four common 
thin shell theories, namely Donnell’s, Flugge’s, 
Love’s and Sander’s. Only simply supported condi-
tions were used in this analysis for finding the fre-
quencies using three-layered cross-ply lamination. A 
Finite element method was implemented by Sun et al. 
[13] to investigate the fundamental frequencies of 
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circular cylinders including  the shear deformation. 
Hu and Tsai [14] presented  work on maximizing the 
frequencies with respect to fiber orientation using a 
golden section method, while in paper [15] a wave 
propagation approach was used for cross-ply compos-
ite cylindrical shells in which transverse shear defor-
mation and rotary inertia were neglected. Analytical 
calculation methods were adopted by Hufenbach et al. 
[16] to discuss the problem regarding vibration and 
damping behavior of multi-layered composite cylin-
drical shells. In the works of Viswanathan and 
Navaneethakrishnan [17, 18] on cylindrical and coni-
cal shells, only a specially orthotropic shell wall is 
considered and rotary inertia and shear deformation 
were totally neglected. More recently, Viswanathan 
and Lee [19] considered the vibration of cross-ply 
laminates including rotary inertia and shear deforma-
tion, but only of a plate. 

In the present paper, the free vibration of a multi-
layered circular cylindrical shell with cross-ply walls 
including shear deformation is analyzed by using the 
spline method. The choice of this method is due to the 
possibility that a chain of lower order approximation, 
as used here, can yield greater accuracy than a global 
higher order approximation. Bickley [20] successfully 
tested the spline collocation method over a two point 
boundary value problem with a cubic spline. 
Viswanathan and Lee successfully applied this in 
their work [19]. These splines are simple and clear for 
analytical processes and have a significant computa-
tional advantage.  

In this work the problem is formulated by using a 
first order shear deformation theory from which we 
obtained a system of coupled differential equations on 
a set of assumed displacement and rotational func-
tions which are functions of space coordinates. These 
functions are approximated by Bickley-type splines, 
which are cubic. Collocation with these splines yields 
a set of field equations which, along with the equa-
tions of boundary conditions, reduce to a system of 
homogeneous simultaneous algebraic equations on 
the assumed spline coefficients. Then the problem is 
solved for a frequency parameter, using an eigensolu-
tion technique, to obtain as many frequencies as re-
quired, starting from the least. The mode shapes can 
be constructed from the spline coefficients, which are 
computed from the eigenvectors.  

Parametric studies have been made for the fre-
quency parameters with respect to the thickness to 
radius ratio, length to radius ratio with two-, three- 

and four-layered shells. Two types of layered materi-
als are considered. Numerical results are presented in 
terms of graphs and tables and discussed. 
 

2. Formulation of the problem 

Consider a thin circular cylindrical shell of length 
, thickness h  and radius r . The shell consists of 

a finite number of layers which are perfectly bonded 
together. The reference surface of the shell is taken to 
be at its middle surface when an orthogonal co-
ordinate system ( , , )x zθ  is fixed. The x  co-
ordinate is taken in the axial direction, whereas θ  
and z are taken in the circumferential and transverse 
directions, respectively. Following Toorani and Lakis 
[21] and Hufenbach et al. [16], the displacement 
components are assumed to be: 

 
0( , , , ) ( , , ) ( , , )xu x z t u x t z x tθ θ ψ θ= +  
0( , , , ) ( , , ) ( , , )v x z t v x t z x tθθ θ ψ θ= +  (1) 

0( , , , ) ( , , )w x z t w x tθ θ=  
 

where u , v  and w  are the displacement compo-
nents in the x , θ  and z directions, respectively, 

0u  and 0v  are the in-plane displacements of the 
shell in the mid-plane, and xψ  and θψ  are the 
shear rotations of any point on the middle surface of 
the shell. The strain-displacement relations of linear 
elasticity for cylindrical shell of radius r  can be 
written as:  

 
0 0

0 0

1, ,

1 1

x
x

x
x

u v w zz
x x r r r
u v z

r x r x

θ
θ

θ
θ

ψ ψ
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∂ ∂∂ ∂= + = + +
∂ ∂ ∂ ∂

∂ ∂⎛ ⎞∂ ∂= + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 

01
xz x z y

w w vand
x r rθγ ψ γ ψ

θ
∂ ∂= + = + −
∂ ∂

  (2) 

 
The stress-strain relations of the k -th layer by ne-

glecting the transverse normal strain and stress, are of 
the form: 
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When the materials are oriented at an angle α  with 
the x -axis, the transformed stress-strain relations 
are: 

 
( ) ( ) ( ) ( ) ( )
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⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜
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 (4) 

 
where 

 
[ ] [ ]1( ) ( )k kQ T C T−⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  (5) 

 
The matrix [ ]T  is the transformation matrix 

(Toorani amd Lakis [21]). Using the transformation 
given in Eq. (5) one can obtain the quantities ( )k

ijQ  as 
functions of ( )k

ijC  and α  given in Appendix A. 
The stress resultants and stress couples are given 

by: 
 
( ) ( ), , , , , ,, ,x x x x x xz z

z

N N N Q Q dzθ θ θ θ θ θσ σ τ τ τ= ∫  

( ) ( ), , ,, ,x x x x
z

M M M z dzθ θ θ θσ σ τ= ∫  (6) 

 
Applying Eq. (2) into Eq. (4) and then substituting 

into Eq. (6) leads to the equations of stress-resultants 
and moment resultant as: 

 
11 12 16 11 12 16 0

12 22 26 12 22 26

16 26 66 16 26 66

11 12 16 11 12 16

12 22 26 12 22 26

16 26 66 16 26 66

x

x

x

x

A A A B B BN u
x

A A A B B BN

N A A A B B B

M B B B D D D

M B B B D D D

M B B B D D D

θ

θ

θ

θ

⎛ ⎞⎛ ⎞ ∂
⎜ ⎟⎜ ⎟

∂⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟=
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

0

0 0

1

1

1

1

x

x

v
r

v u
x r

x

r

x r

θ

θ

θ

θ
ψ

ψ
θ

ψ ψ
θ

⎛ ⎞
⎜ ⎟
⎜ ⎟

∂⎜ ⎟
⎜ ⎟∂⎜ ⎟
∂ ∂⎜ ⎟+⎜ ⎟∂ ∂
⎜ ⎟∂⎜ ⎟
⎜ ⎟∂
⎜ ⎟∂⎜ ⎟
⎜ ⎟∂
⎜ ⎟∂ ∂⎜ ⎟+
∂ ∂⎝ ⎠

 

and 
 

0
44 45

45 55

1

xx

w vQ A A
r rK

w
Q A A

x

θ θψ
θ

ψ

∂⎛ ⎞⎛ ⎞ ⎛ ⎞ + −⎜ ⎟⎜ ⎟ ⎜ ⎟ ∂⎜ ⎟=⎜ ⎟ ⎜ ⎟ ∂⎜ ⎟⎜ ⎟ ⎜ ⎟ +⎜ ⎟⎝ ⎠ ⎝ ⎠ ∂⎝ ⎠

  (7) 

in which ijA , ijB  and ijD  are the laminate stiff-
nesses defined by  

 
( ) ( ) 2 2

1 1
1( ) , ( ) ,
2

k k
ij ij k k ij ij k k

k k
A Q z z B Q z z− −= − = −∑ ∑  

( ) 3 3
1

1 ( )
3

k
ij ij k k

k
D Q z z −= −∑  ( ,i j= 1, 2, 6)  (8)  

 
and K  is the shear correction factor, 1kz −  and kz  
are boundaries of the k -th layer. The value of K  
for a general laminate depends on lamina properties 
and lamination scheme and may be calculated by 
various static and dynamic methods (Whitney and 
Sun [22], Whitney [23], Bert [24] and Perngjin [25]).  

On Substitution of Eq. (7) into the equations of mo-
tion of anisotropic circular cylindrical shells by taking 
into account the shear deformation and rotary inertia 
effects (given in Appendix B), the following differen-
tial equations are obtained in terms of displacements 
and rotational functions in the following form: 

 
11 12 13 14 15 0

21 22 23 24 25 0

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

0
0
0
0
0

x

L L L L L u
L L L L L v
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⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪
⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎩ ⎭⎣ ⎦ ⎩ ⎭

  (9) 

 
where   
 

2 2 2 2
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∂ ∂ ∂ ∂= + + −
∂ ∂ ∂ ∂ ∂

  

2 2 2
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1 1( )L A A A A
x r x rθ θ
∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

 

13 12 26 2

1 1L A A
r x r θ
∂ ∂= +
∂ ∂

  

2 2 2

14 11 16 662 2 2

1 12L B B B
x r x rθ θ
∂ ∂ ∂= + +
∂ ∂ ∂ ∂

 

2 2 2
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  (10) 

 
The coefficients 16 26 16 26 16 26, , , , ,A A B B D D  and 45A  

are identically zero for cross-ply laminates (see [11]). 
The displacement components 0u , 0v , w  and 

shear rotations xψ , θψ  are assumed in the form 
 

0( , , ) ( ) i tu x t U x cos n e ωθ θ=  

0 ( , , ) ( ) i tv x t V x sinn e ωθ θ=  
( , , ) ( ) i tw x t W x cos n e ωθ θ=      (11) 
( , , ) ( ) i t

x xx t x cos n e ωψ θ θ= Ψ  
( , , ) ( )sin i tx t x n e ω

θ θψ θ θ= Ψ  
 

where ω  is the angular frequency of vibration and 
t  is the time and n  is the circumferential node 
number. 

The non-dimensional parameters are introduced as 
follows:  

1

11

I
A

λ ω=   ,  a frequency parameter 

xX = , a distance co-ordinate 

hH
r

= , thickness parameter 

L
r

= , a length parameter 

k
k

h
h

δ = , relative layer thickness of the k  -th 

layer 

rR = , a radius parameter.    (12) 

Substituting Eq. (11) into Eq. (9) to get the differ-
ential equations depending on a single variable x  
and then applying the non-dimensional parameters 
given in Eq. (12), we get the modified governing 
differential equations as follows: 

 
* * * * *
11 12 13 14 15

* * * * *
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* * * * *
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* * * * *
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⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ Ψ⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪Ψ⎢ ⎥ ⎩ ⎭⎩ ⎭⎣ ⎦

 (13) 
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where 
 

2 2
* 2
11 102 2

d nL S
dX R
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24 11 5 42( ) n dL S S L

R dX
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2 2
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1
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λ
⎛ ⎞
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⎝ ⎠
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2 2
* 23
55 12 9 132 2 2

1
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dX R I

λ
⎛ ⎞
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 (14) 

 
The quantities ( 1,2,....,14)iS i =  are defined by 
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12 2
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A

= ,  
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11
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A
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14

11
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A

= .  (15) 

 

3. Spline collocation procedure 

The differential equations given in Eq. (13) are to 
be solved. The numerical method of solution is re-
sorted to, since no closed-form solution exists for 

these problems in general. The spline technique is 
used since it is relatively simple and elegant and uses 
a series of lower order approximations rather than a 
global higher order approximation, affording fast 
convergence and high accuracy.  

The displacement functions ( )U X , ( )V X , 
( )W X and rotational functions ( )X XΨ , ( )XθΨ  

are approximated by the cubic spline functions 
*( )U X , *( )V X , *( )W X , * ( )X XΨ  and * ( )XθΨ  as 

stated below: 
 

2 1
* 3

0 0
( ) ( ) ( )

N
i

i j j j
i j

U X a X b X X H X X
−

= =

= + − −∑ ∑  
2 1

* 3

0 0
( ) ( ) ( )

N
i

i j j j
i j

V X c X d X X H X X
−

= =
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2 1

* 3

0 0

( ) ( ) ( )
N

i
i j j j

i j
W X e X f X X H X X

−

= =

= + − −∑ ∑  (16) 

2 1
* 3

0 0

( ) ( ) ( )
N

i
X i j j j

i j
X g X p X X H X X

−

= =

Ψ = + − −∑ ∑  

2 1
* 3

0 0
( ) ( ) ( )

N
i

i j j j
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X l X q X X H X Xθ

−

= =
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Here N  is the number of intervals into which the 

range [0, 1] of X  is divided and ( )jH X X−  is the 
Heaviside step function. The points of division 

/sX X s N= = , ( 0,1,...., )s N=  are chosen as the 
knots of the splines, as well as the collocation points. 
Imposing the condition that the differential equations 
given by Eq. (13) are satisfied by these splines at 
these points, a set of 5 5N +  homogeneous equa-
tions in 5 15N +  unknown spline coefficients 

, , , , , , , , ,i i i i i j j j j ja c e g l b d f p q ( 0, 1, 2; 0, 1, 2,.....,i j= =
1)N − are obtained.  

The following boundary conditions are used to ana-
lyze the problem. 

Clamped-Clamped (C-C) (both the ends are 
clamped) 

Simply supported-Simply supported (S-S) (both the 
ends are simply supported) 

Clamped-Simply supported (C-S) (one end is 
clamped and the other end is Simply supported) 

Each pair of the boundary conditions imposed 
gives 10 equations on spline coefficients. Combining 
them with those obtained earlier, we get 5 15N +  
homogeneous equations in the same number of un-
knowns. Thus, we have a generalized eigenvalue 
problem in the form 

 
[ ]{ } [ ]{ }2M q P qλ=   (17) 
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where [ ]M  and [ ]P  are square matrices, { }q  is 
the column matrix of the spline coefficients and λ  is 
the eigenfrequency parameter .  
 

4. Results and discussion 

4.1 Convergence and comparative studies 
A convergence study of the frequency parameter 

values is carried out for several cases of parametric 
values, material combinations under different bound-
ary conditions, for values of 4N =  onwards. It can 
be seen that the choice of 16N =  is more adequate 
since for the next value of N , the percentage 
changes in values of 1λ  are very low, the maximum  

 
Table 1. Comparative study of fundamental frequency 

2
2( / ) ( / )R h Eω ω ρ=  

R : radius of the cylinder, h : total thickness, ρ : density 
 

ω  Thickness 
h 

Lamination (m,n) 
pω  sω  

Difference

0.04 R 
0º/90º 

90º/0º/90º/0º 
90º/0º/0º/90º 

(1,3) 
(1,3) 
(1,3) 

8.823 
12.301 
13.127 

9.526 
11.331
12.652

-7.967 
7.885 
3.618 

0.1 R 
0º/90º 

90º/0º/90º/0º 
90º/0º/0º/90º 

(1,2) 
(1,2) 
(1,2) 

4.830 
6.543 
6.335 

5.142 
5.924 
6.019 

-6.459 
9.460 
4.988  

PPresent analysis; sSun et al. [13] 

being 0.17%. Table 1 compares the fundamental fre-
quency parameter values obtained for a cross-ply 
laminated cylindrical shell for 0.5R L= , using S-S 
boundary conditions with the FEM results of [13]. 
The results of Toorani and Lakis [26] on a simply 
supported anisotropic cross-ply cylinder 0 0(0 /90 /  

0 090 / 0 )  including shear deformation and rotary 
inertia of different radii ratio ( / )R t , the circumferen-
tial node number ( )n  and the corresponding results 
presently obtained are shown in Table 2. The differ-
ences are not significant. Table 3 shows the compari-
son results of frequency values of an orthotropic ho-
mogeneous cylindrical shell for various circumferen-
tial node numbers ( )n  and axial modes ( )m  with  
 
Table 2. Comparison of the fundamental frequency Ω =  

2 1/ 2
2( / ) /R E tω ρ  of simply supported  anisotropic cross-ply 

cylinder 0 0 0 0(0 / 90 / 90 / 0 )  including shear deformation and 
rotary inertia. 
 

R/t=100 R/t=50 
n 

Present Ref.[26] 
(approximately) Present Ref.[26] 

(approximately)
1 
2 
3 
4 
5 

30.414
17.861
12.416
11.697
13.987

30 
18 
13 
11 
11.5 

15.224 
 9.073 
 7.343 
 6.851 
 9.882 

14 
8 
7 
6.5 
8 

 

 

 
 
Fig. 1. Variation of frequency parameter with circumferential node number of four-layered antisymmetric cross-ply shells under 
C-C, S-S and C-S boundary conditions. Layer materials: KGE- AGE-AGE-KGE. 
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Table 3. Comparison of the frequency parameter Ω =  
2/ Eω ρ  of simply supported orthotropic cylindrical shells 

( 1, 0.1r h= = ).  
 

Axial mode (m)  
Circumfer-

ential 
Node num-

ber(n) 
 1 2 3 

1 

Present 
Ref[28]a 

Ref[28]b 

Ref[28]c 

Ref[28]d 

1.50734 
1.32416 
1.33745 
1.29858 
1.57257 

4.29029 
3.42856 
3.43487 
3.19538 
5.26048 

6.37845 
5.65598 
5.68570 
5.13383 
7.34788 

2 

Present 
Ref[28]a 

Ref[28]b 

Ref[28]c 

Ref[28]d 

1.89851 
1.65929 
1.69031 
1.63768 
1.99961 

4.45693 
3.59532 
3.60790 
3.36074 
5.85093 

6.48173 
5.77045 
5.80137 
5.24850 
9.08880 

3 

Present 
Ref[28]a 

Ref[28]b 

Ref[28]c 

Ref[28]d 

2.12132 
2.50573 
2.53918 
2.44409 
3.09808 

4.51845 
4.08989 
4.10523 
3.83876 
6.45360 

7.31001 
6.10449 
6.13436 
5.57354 
11.36729

4 

Present 
Ref[28]a 

Ref[28]b 

Ref[28]c 

Ref[28]d 

2.82843 
3.64582 
3.67091 
3.49515 
4.77389 

4.60743 
4.89994 
4.91181 
4.59461 
7.53134 

7.44014 
6.68608 
6.71169 
6.12261.
13.18665

5 

Present 
Ref[28]a 

Ref[28]b 

Ref[28]c 

Ref[28]d 

3.53848 
4.92951 
4.94282 
4.65406 
6.89750 

5.01318 
5.93701 
5.94121 
5.53630 
9.13471 

7.45914 
7.48804 
7.50705 
6.85888 
14.23784

6 

Present 
Ref[28]a 

Ref[28]b 

Ref[28]c 

Ref[28]d 

4.21136 
6.28273 
6.28481 
5.85751 
9.36898 

5.84827 
7.11414 
7.11024 
6.58546 
11.20323 

7.98317 
8.45781 
8.47035 
7.73038 
15.62888

7 

Present 
Ref[28]a 

Ref[28]b 

Ref[28]c 

Ref[28]d 

6.73013 
7.66909 
7.66367 
7.07696 
12.10934 

7.50782 
8.37330 
8.36430 
7.69351 
13.64076 

8.35424 
9.54541 
9.55452 
8.69288 
17.42526

8 

Present 
Ref[28]a 

Ref[28]b 

Ref[28]c 

Ref[28]d 

7.48689 
9.07057 
9.06401 
8.29955 
15.05423 

8.00767 
9.68036 
9.67213 
8.83331 
16.35665 

9.43707 
10.03301
10.72479
9.71513 
19.58434

a3-D analysis; bParabolic shear deformation theory; cConstant 
shear deformation theory; dThin shell theory 

Table 4. Comparison of the fundamental frequency *ω  (Ye 
and Soldatos[29]) of simply supported cylindrical shells with 
symmetric cross-ply laminates. 

1, 40, 0.6 , 0.5 , 0.25x x xz z xr E E G E G G Eθ θ θ θ θ θν= = = = = =  
 

0º/90º/90º/0º 90º/0º/0º/90º 
 

h/r
 
n 

Present
Ye and  

Soldatos[29]
Present 

Ye and  
Soldatos[29]

0.1
2 
4 
6 

0.082831
0.076309
0.074118

0.079277 
0.066335 
0.064600 

0.062899 
0.051555 
0.054261 

0.070738 
0.052748 
0.059130 

0.2
2 
4 
6 

0.177462
0.170696
0.176990

0.175188 
0.162844 
0.170868 

0.152241 
0.121318 
0.163189 

0.150651 
0.130168 
0.158886 

0.3
2 
4 
6 

0.280720
0.275497
0.294626

0.272860 
0.263048 
0.283798 

0.244864 
0.231831 
0.284595 

0.236385 
0.218779 
0.268258 

 
 

/ 1r =  and / 0.1h = . The present values are com 
pared with the results obtained by 3-D analysis, para-
bolic shear deformation, constant shear deformation 
and thin shell theory [28]. The comparison of the 
fundamental frequency 2 1/ 2

66* ( / )h Cω ω ρ π=  for 
various thickness ratios ( / )h  and circumferential 
node numbers ( )n  with those results using 3-D 
analysis obtained by Ye and Soldatos [29], for simply 
supported cylindrical shells with symmetric cross-ply 
laminates is presented in Table 4. The properties for 
the comparison are / 0.1r = , 40xE Eθ = , 

0.6xG Eθ θ= , 0.5xz zG G Eθ θ= =  and 0.25xθν = . 
The agreement correlated with the previously pub-
lished results given in the tables, which indicates that 
the present analysis is accurate. The presence of 
transverse shear deformation effects is more signifi-
cant, which reduces the frequency parameters pre-
dicted by the classical shell theory. 

 
4.2 Discussion 

The effects of material anisotropy, transverse shear 
deformation, thickness-to-radius ratio, length-to-
radius ratio, coupling between bending and stretching 
and the number of layers on the first three frequencies 
are investigated. Both symmetric and antisymmetric 
cross-ply laminations are considered. The shear cor-
rection factor K  is taken as 5/6 for all the cases (see 
[25]). Two types of materials, namely Kevler-49 ep- 
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oxy (KGE) and AS4/3501-6 Graphite/epoxy (AGE) 
(see [27]) are used to analyze the problem.  

Figs. 1-3 depict the manner of frequencies of four-
layered antisymmetric cross-ply shells made of KGE 
and AGE materials with three different boundary 
conditions, namely clamped-clamped (C-C), simply 
supported-simply supported (S-S) and clamped-

simply supported (C-S) with arranging the layers in 
the order of KGE-AGE-AGE-KGE materials. All the 
layers considered are of equal thickness. Fig. 1((a)-
(f)) shows the variation of frequency parameter 

( 1,2,3)m mλ = with reference to the circumferential 
node number n  fixing 0.02H = . Figs. (a), (b) and 
(c) correspond to the boundary conditions C-C, S-S 

 
 
Fig. 2. Effect of thickness parameter and boundary conditions on the frequency parameters of four-layered antisymmetric 
cross-ply shells. Layer materials: KGE- AGE-AGE-KGE. 
 

  
Fig. 3. Effect of length of the four-layered antisymmetric cross-ply shell and boundary conditions on frequencies. Layer materi-
als: KGE-AGE-AGE-KGE. 
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and C-S, respectively, by fixing the length parameter 
1.0L = , whereas Figs. (d), (e) and (f) correspond to 

the boundary conditions C-C, S-S and C-S, respec-
tively, with the length parameter 1.5L = . It is seen 
from the figures that all the frequency parameter val-
ues ( , 1,2,3)m mλ =  decrease up to 4n =  and then 
increase for higher values of n . The value of the 
fundamental frequency ( 1)m =  for 1.0L =  is 
higher than the fundamental frequency for 1.5L =  in 
all the cases. One may conclude from the results that 
the fundamental frequency is higher for shorter shells. 
Analyzing with reference to the types of boundary 
conditions, it is seen, as expected, the frequencies are 
higher for C-C conditions, lowest for S-S conditions 
and in-between the two for C-S conditions. 

Fig. 2(a)-(f) shows the variation of frequency pa-
rameter λ  with respect to the thickness parameter 
H  for four-layered antisymmetric cross-ply shells. 
Figs. (a), (b), (c)) correspond to the value of 4n =  
and Figs. (d), (e), (f) correspond to 8n =  with fixed 
value of 1.0L = . The value of λ  increases as H  
increases and it seems to be almost linear. The rate of 
increase rises with the value of the mode number. The 
frequencies are higher for C-C conditions, lowest for 
S-S conditions and in-between the two for C-S condi-
tions, as described earlier.  

Fig. 3(a)-(f) describes how the length parameter L  
affects ω  (in 104 Hz) for four-layered 0 0(0 /90 /  

0 00 /90 ) antisymmetric cross-ply shells under C-C, S-
S and C-S boundary conditions, with 0.02H =  and 

4n = or 8. For the influence of the length of the cyl-
inder on its vibrational behavior, the actual frequency 
ω  is considered since the frequency parameter λ  is 
explicitly a function of the length  of the cylinder 
and then specific length is to be prescribed; therefore, 
the thickness of the shell h  is taken to be 1cm. The 
value of ω  decreases in general as L  increases. 
The decrease is fast for very short shells (for 0.5 < L  
< 0.75), the rate of decrease increasing with higher 
modes. The fundamental frequencies are almost con-
stant for L  > 0.85. 

Figs. 4-6 relate to studies on two-layered 0 0(0 /90 )  
antisymmetric cross-ply shells made of the single 
material KGE with different boundary conditions. 
The influence of the circumferential node number n  
on the frequency parameter λ  is illustrated in Fig. 
4((a)-(f)) for the cases 1.0L =  and 1.5. The other 
parameters are fixed. Qualitatively, the vibrational 
behavior of these shells is similar to that of the corre-
sponding case of Fig. 1((a)-(f)). In Fig. 5, the influ-
ence of the thickness parameter H  on the frequency 
parameter λ  is analyzed by fixing 1.0L =  and 

4n =  under C-C, S-S and C-S conditions. Fig. 6 
shows the influence of the length parameter L  on 
the frequencies mω . The pattern of the influence is 
similar in nature to the corresponding cases of four-

  
Fig. 4. Variation of frequency parameter with circumferential node number of two-layered antisymmetric cross-ply shells. Layer 
material: KGE-KGE. 
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layered antisymmetric cross-ply shells and differs 
only in magnitude. 

Figs. 7-9 relate the study on three-layered symmet-
ric cross-ply laminated shells in the form of 

0 0 00 /90 / 0  angles. The layered materials are ar-
ranged in the order of KGE-AGE-KGE. Fig. 7((a)-(f)) 
shows the variation of frequency parameter with re-
spect to the circumferential node number n  for two 
fixed values of L  with 0.02H =  under C-C, S-S 
and C-S boundary conditions. The curvature of the 

mλ  is higher for C-C and S-S conditions compared to 
the C-S conditions. The frequency values are lower in 
C-S conditions than the other two conditions. But in 
the case of antisymmetric cross-ply laminates, the 
values are vice versa. Fig. 8 describes the variation of 
frequency parameter with the thickness parameter 
H . It is seen that when increasing H , for any fixed 

L  and n , the value of mλ  increases. Fig. 9 de-
scribes the manner of variation of the values of fre-
quencies mω  with respect to the length parameter 
L  of three-layered symmetric cross-ply shells made 
of KGE and AGE materials in the order of KGE-
AGE-KGE under three different boundary conditions, 
C-C, S-S and C-S. Clearly, the vibrational pattern is 
similar in all the cases of boundary conditions and 
suffers only parallel shifts. The same phenomenon 
prevails for two- and four-layered antisymmetric 
cross-ply shells. From the above discussions, we 
come to know that designers may be clear in choosing 
the respective materials for suitable designs in the 
field of ship building and aviation etc., which can be 
symmetric or antisymmetric laminated shells along 
with the necessary boundary conditions and number 
of layers. 

  
Fig. 5. Effect of thickness parameter and boundary conditions on frequency parameter of two-layered antisymmetric  cross-ply 
shells. Layer material: KGE- KGE. 
 

  
Fig. 6. Effect of length of the two-layered antisymmetric cross-ply shell and boundary conditions on frequencies. Layer materi-
als: KGE-KGE. 
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Fig. 7. Variation of frequency parameter with circumferential node number of three-layered symmetric cross-ply shells. Layer 
material: KGE-AGE-KGE. 
 

  
Fig. 8. Effect of thickness parameter and boundary conditions on the frequency parameters of three-layered symmetric  cross-
ply shells. Layer material: KGE- AGE-KGE. 

 

  
Fig. 9. Effect of length of the three-layered symmetric cross-ply shell and boundary conditions on frequencies. Layer materials: 
KGE-AGE-KGE. 
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5. Conclusion  
The manner of variation of eigenfrequencies with 

respect to circumferential node number, thickness 
parameter, length parameter, cross-ply angles and the 
types of boundary conditions are investigated. Both 
symmetric and antisymmetric shells including shear 
deformation theory with three different numbers of 
layers having two types of materials on the vibra-
tional behavior are studied and presented. In general, 
the frequency values decrease as the length parameter 
increases. The variation is fast for short shells and 
then it is slow when the length is increases. In the 
case of the thickness of the shell, the variation of the 
frequency parameter increases as the thickness  in-
creases. The increment is higher for higher modes and 
is almost linear.  

The effect of transverse shear deformation is more 
significant, which yields  lower values on the fre-
quency parameters when we compare the values pre-
dicted by classical shell theory. The elegance and 
usefulness of spline function approximations by ap-
plying the collocation procedure for boundary value 
problems is clearly brought out in this study. 
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Appendix. A 

The quantities ( ) ( , 1,2,4,5,6)k
ijQ i j=  appearing 

in Eqs.(4) are defined by 
 

( ) ( ) 4 ( ) 4
11 11 22

( ) ( ) 2 2
12 66

cos sin

2( 2 )sin cos

k k k

k k

Q C C

C C

α α
α α

= +

+ +
 (A.1) 

( ) ( ) 4 ( ) 4
22 11 22

( ) ( ) 2 2
12 66

sin cos

2( 2 )sin cos

k k k

k k

Q C C

C C

α α
α α

= +

+ +
 (A.2) 

( ) ( ) ( ) ( ) 2 2
12 11 22 66

( ) 4 4
12

( 4 )sin cos

(cos sin )

k k k k

k

Q C C C

C

α α
α α

= + −

+ +
 (A.3) 

( ) ( ) ( ) ( ) 3
16 11 12 66

( ) ( ) ( ) 3
22 12 66

( 2 )cos sin

( 2 )sin cos

k k k k

k k k

Q C C C

C C C

α α
α α

= − −

− − −
 (A.4) 

( ) ( ) ( ) ( ) 3
26 11 12 66

( ) ( ) ( ) 3
22 12 66

( 2 )cos sin

( 2 )sin cos

k k k k

k k k

Q C C C

C C C

α α
α α

= − −

− − −
 (A.5) 

( ) ( ) ( ) ( ) ( )
66 11 22 12 66

2 2 ( ) 4 4
66

( 2 2 )

cos sin (sin cos )

k k k k k

k

Q C C C C

Cα α α α
= + − −

+ +
 (A.6) 

( ) ( ) 2 ( ) 2
44 55 44sin cosk k kQ C Cα α= +  (A.7) 

( ) ( ) 2 ( ) 2
55 55 44cos sink k kQ C Cα α= +  (A.8) 

( ) ( ) ( )
45 55 44( )cos sink k kQ C C α α= −  (A.9) 

 
where 
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11 ( ) ( )

( ) ( ) ( ) ( )
( )

12 ( ) ( ) ( ) ( )

,
1

1 1

k
k x

k k
x x

k k k k
k x x x

k k k k
x x x x

EC

E EC

θ θ

θ θ θ

θ θ θ θ

υ υ
υ υ
υ υ υ υ

=
−

= =
− −

 

( )
( ) ( ) ( )

22 66( ) ( )

( ) ( ) ( ) ( )
44 55

, ,
1

,

k
k k k

xk k
x x

k k k k
z xz

EC C G

C G C G

θ
θ

θ θ

θ

υ υ
= =

−

= =
 (A.10) 

 

Appendix. B 

The equilibrium equations of circular cylindrical 
shells including shear deformation and rotary inertia 
are given by 
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∂ ∂ ∂+ − =
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∂ ∂ ∂

 (B.1) 

 
Here x  and θ  are the curvilinear co-ordinates of 

the cylindrical shells, and 1I  and 3I  are the normal 
and rotary inertia coefficients given by 

 
( ) 2

1 3( , ) (1, )kI I z dzρ= ∫  (B.2) 

 
in which ( )kρ  is the material density of the k -th 
layer of the shell. 
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